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An electromagnetic PIC plasma simulation code incorporating the implicit moment method 
and a two-dimensional cylindrical mesh, with r- and z-coordinate dependence, has been 
developed. The code is an extension of the VENUS code from the original two-dimensional 
Cartesian mesh. The physical model employed in the code will be discussed, with emphasis on 
aspects unique to cylindrical geometry. An application to self-generated magnetic fields and 
electron transport in a laser-irradiated disk is presented that highlights the usefulness of cylin- 
drical coordinates. 0 1986 Academic Press, Inc. 

INTRODUCTION 

An implicit moment method for nonrelativistic electromagnetic plasma 
simulation in two dimensions has recently been developed [ 11. The method, 
introduced by Mason [2] in an electrostatic context, employs a new way of advan- 
cing in time the coupled particle and field equations that eliminates many of the 
numerical constraints on time and space steps encountered in explicit plasma 
simulation codes. With the implicit method, it is not necessary to resolve the elec- 
tron plasma oscillations or the propagation of light waves. Computations which 
follow in detail only the ions and still remain numerically stable are possible. 
Likewise, it is unnecessary to resolve the Debye length. The method makes 
accessible to simulation larger time and space scales than are practical with an 
explicit formulation of the Maxwell-Vlasov equations. This is especially useful when 
simulating low-frequency plasma phenomena in which the high-frequency com- 
ponent of the electron motion is physically insignificant and only the average elec- 
tron motion, where the high-frequency component has been removed, need to be 
considered. 

The implicit moment method has been employed in the VENUS PIC code using 
the usual Cartesian grid [ 11. However, because the implicit method makes possible 
the simulation of an entire plasma, including boundary effects, one is lead to incor- 
porate the option of another mesh geometry. The two-dimensional Cartesian mesh 
is appropriate for a system which is infinite and perfectly homogeneous along the 
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third Cartesian axis, frequently a reasonable approximation when modeling a small 
piece of a much larger physical system with an explicit simulation code. But a rec- 
tilinear mesh can be unrealistic for the simulation of an entire plasma and can lead 
to significant difficulty in the interpretation of the results. The most generally useful 
coordinates for representing bounded physical systems in two dimensions are cylin- 
drical coordinates. One requires only that the physical system to be modeled 
possess symmetry, or approximate symmetry, with respect to some axis, often the 
case in practice. The radial and axial (r and z) dependences are incorporated in the 
particle and field equations, the single geometrical approximation being that all 
quantities in the system are indepedent of the azimuthal coordinate 8. All com- 
ponents of vector quantities are incorporated. Thus one obtains a true three-dimen- 
sional representation of any system which possesses azimuthal symmetry. 

This paper describes the incorporation of cylindrical coordinates into the 
VENUS code. The general formulation of the implicit moment method for an elec- 
tromagnetic plasma in cylindrical coordinates is given in Section 1. In Section 2, the 
advance of the particles in time is described in detail. Here it is shown how a Car- 
tesian particle mover may be converted readily to a cylindrical particle mover. The 
solution algorithm for the field equations is discussed in Section 3. And in Section 4 
an application, which demonstrates the utility of cylindrical coordinates, is pre- 
sented. This is the problem of laser irradiation ~1’ the center of a disk-shaped foil. 
Comparisons of cylindrical and Cartesian simulations of the same system show 
significant differences in the self-generated magnetic fields and the magnetic-field 
induced surface electron transport, showing clearly the advantages of the more 
physical cylindrical mesh. Finally Section 5 is a brief summary of the work. 

1. FORMULATION OF THE IMPLICIT MOMENT METHOD 
FOR ELECTROMAGNETIC PLASMA SIMULATION 

The implicit algorithm for the simulation of a plasma in an electromagnetic field 
is developed, starting from first principles. 

a. General Considerations 

The plasma simulation code describes a system of particles under the influence of 
Newton’s law of motion, 

(1.2) 

where s designates the particle type and p the particle index, qs is the charge, and 
m, is the mass of particle type s. The force on the r.h.s. of Eq. (1.2), purely elec- 
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tromagnetic in nature, is derived from self-consistent electric and magnetic fields E 
and B, satisfying Maxwell’s equations. Introducing the usual scalar and vector 
potentials, @ and A, we write 

B=VxA. (1.4) 

The homogeneous Maxwell equations are then automatically satisfied and the 
inhomogeneous equations become 

(1.5) 

and 

V2@= -4nN, (1.6) 

where N is the net charge density and J is the net current density. 
Additionally, computations are carried out in the Coulomb gauge so that 

V. A=O. (1.7) 

In terms of the particle quantities, the densities are 

and 

J = 1 J, = 14, j uf,(x, u) h, 
s s 

(1.8) 

(1.9) 

wheref,(x, u) is the distribution function for particles of type s in x-u space. N and 
J are the zeroth and first moments of the distribution function. The system of 
equations to be solved is thus Eqs. (Ll), (1.2), (1.5), and (1.6), with the fields and 
potentials related by (1.3) and (1.4) and the density functions given by (1.8) and 
(1.9). We shall now develop the finite-difference form of these equations. 

Conservative, central spatial differencing, described in the Appendix, is employed. 
The time differencing, which is not standard, is discussed in the next section. 

b. Time Dlyferencing 

Considering first the time variable, the equations are finite differenced as follows 
Cll: 

X”+l 
SP 

--x” =,,“+li2At 
SP SP 3 (1.10) 
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O(cAt) 
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-e(Cdt)? 

[(l +O) A”-BA’7P’], 
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(1.11) 

(1.12) 

(1.13) 

The superscript indicates the time in units of At, the time unit to be used for the 
remainder of this paper. 0 is a parameter lying in the range 0 < d < 1. 

In the original VENUS code, the time step At is chosen so that 

v,,At O(10 ‘)<- A.r <al)> 

where u,~ is the average thermal speed of the fastest particle type and Ax is the mesh 
interval. In the modified version of the code presented here, without an explicit 
pressure, the upper Courant limit is replaced by a turning point restriction on the 
particle orbits [3,4]. The lower limit is imposed by the finite grid instability [ 11. 
The parameter 0 is chosen as in Ref. [ I]. 

The fields are derived from the potentials according to 

A ,f + R 
E”+n = -v@“+“- 

- A” 

&At ’ 
and 

B”=VxA”. (1.16) 

After a solution for the above fields has been obtained, the vector potential is 
advanced in time according to 

The density functions are given by 

and 

N”+“(x) =cq,s c h(x - x~~‘)/(2zr Ar Az), 
Y P 

(1.18) 

Jn+“2(~)=x qs 1 u$+“~~(x - xr,,+ ‘/‘)/(2m Ar AZ), 
s P 

where h is the particle-in-ceil shape factor, to be discussed in Section 2. 

(1.19) 
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It will be noted that the density functions required in Eqs. ( 1.12) and ( 1.13) are 
evaluated not at the beginning of the time interval, time n, but at some intermediate 
point in the interval. This is a manifestation of the implicitness of the scheme. 
However, before the field E” + ’ has been found, the particle positions and velocities 
are known at no time later than n. Thus direct use of Eqs. ( 1.18) and ( 1.19), which 
require particle information at later times, would necessitate a simultaneous 
solution for particle and field quantities at intermediate times, a very time-consum- 
ing proposition. This difficulty is overcome by use of the fluid equations for N and J 
to extrapolate the known particle densities at time n, Eqs. (1.18) and (1.19) with 8 
and 4 replaced by 0, a fraction of a time step ahead for substitution into the field 
equations. This is the essence of the implicit moment method. It makes possible a 
separation of the advance of the fields from that of the particles. No operations are 
performed on the particles during the field advance of a time step, which results in a 
considerable saving of machine time. We shall now show how this proceeds. 

The equation for the charge density, which we consider first, is the continuity 
equation, 

;+V.J=O. (1.20) 

The finite difference form of this equation, consistent with Eq. (l.lO), is 

N’!+“=N;-V~J:+“2(8At). J (1.21) 

Thus the current density at time n + l/2 is the remaining quantity required to close 
the system of equations. This may be obtained by using Eq. (1.1 l), with the 
replacement At + At/2, to rewrite u, n + ‘I2 in Eq. ( 1.19). The result is 

J:~“(x)=~,~[u;~+~(E”+“+~~xB”) At,21 
P ., 

x h(x - xyp+ ‘!‘)/(27rr Ar AZ). (1.22) 

Making the approximations that particle accelerations are sufficiently small that 
(At)‘-contributions may be dropped from the first term of Eq. (1.22) and summing 
the second term exactly, we obtain 

J;+'!2(x)=J:I+li2(x)+~ N:i"'E"i"+J:'+'fxB"](At/2), (1.23) 
s 

where 

J:+ l/‘(x) = qs 1 uyp h(x - x& - u$, At/2)j(2nr Ar AZ). 
P 

(1.24) 

?+ ‘I2 is the current density at time n + l/2 that would have resulted from free s 
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streaming of the particles after time n. (In the slightly more complicated for- 
mulation given in Ref. [4], the acceleration due to the magnetic field replaces the 
free-streaming motion,) Employing all the particle orbit information available at n, 
but no field information, 2 + l/2 is similar to a current-density estimate used in the 
direct method [3]. In this regard the present formulation is rather closer to the 
direct method with simplified differencing than was the formulation of Ref. [ 11. It is 
within the s term that the pressure tensor, which does not appear explicitly in this 
formulation, is embedded.’ This formulation is adequate for weakly magnetized 
plasmas, i.e., for o,, At < 1. Equation (1.23) may be rearranged so that J:+ ‘I2 is 
given explicitly. 

Jn+1/2-j +&jsxB” 
s -3 (1.25) 

w c 

where 

j E ~+1/2+q’N:+I;2En+D(At/2) 
I 

1 
s 

m, 1 + (0,.,dt/2)2 

and 

(1.27) 

is the cyclotron frequency. 
Analogously, Eq. (1.11) may be rearranged to give u: + ‘/2 explicitly, for use in 

Eq. (1.10). 

uyp+ ‘0 = 8, + - ” li, (A&‘) + 2 (‘, ’ B”) B”(AQ)2 
c2 1 

4 c 
(1.28) 

where 

u$+4’E”+“(Ar/2) 1 1 

m, 1 + (0,.,At/2)~’ 

Intercomparison of Eqs. (1.25)-(1.29) shows in detail how the fluid description 
approximates the particle description. In the more precise particle description, Eqs. 
(1.28), (1.29), the fields are reevaluated for each particle at a point midway along 
the trajectory segment traversed between times n and n + 1. In the fluid description, 
Eqs. (1.25), (1.26), the fields are evaluated at grid points and act on all particle frac- 
tions estimated to be located within the corresponding cell at time n + l/2. Different 
fractions of the same particle are subject to different fields centered in adjacent ceils, 

’ The equivalent pressure tensor is pJ = zp (I$~ - 2s:)(u;, - U:) h(x - x$ -II& dr/2)/(27rr Ar AZ), where 
u: = xp llis h(x -x&)& h(x - xg. 
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but this is satisfactory for purposes of extrapolation over a fraction of a time step. 
The approximation propagates into the continuity equation (1.21) of course, the 
fluid analog of particle equation (1.10). 

We now have a complete, self-consistent description of the physical system. The 
advance in time proceeds as follows: Assume the particle and field quantities x!~, 
uip, A”, A”-’ are known for some n. Then N”, J” and p+ ‘I2 are calculated from 
Eqs. (1.18) and (1.19), with 8 and t replaced by 0, and Eq. (1.24). Next @” is 
calculated using Eq. (1.13) with 8 = 0. This ensures that the electrostatic potential at 
n is closely tied to the particle parameters and that the Coulomb-gauge relationship 
between @ and N is preserved. Next J”+ ‘I’, N”+‘, @J”+’ and A”+@ are obtained by 
solving Eqs. (1.23), (1.21), (1.13), and (1.12) using an iterative procedure to be 
described in Section 3. Then A”+ ’ is evaluated using Eq. (1.17), En+’ using Eq. 
(1.15), and B”+’ using Eq. (1.16). The particles are then advanced to time n + 1 
using Eqs. (1.28), (1.10) and (1.11). This completes the advance of one time step. 

2. ADVANCING THE PARTICLES IN TIME 

In this section we shall describe our method for advancing the particles in time in 
cylindrical coordinates. We begin with the specification of a PIC particle in the 
cylindrical mesh. 

Each PIC particle is a three-dimensional entity, a cylindrical shell with constant 
radial thickness Ar and height AZ. See Fig. 1. The particles will thus tit precisely into 
a mesh cell, just as in the Cartesian case. The particle location in the mesh at time n 
is specified by the coordinates of the particle midpoint, Y” and zn, in the radial and 
axial directions, where we have dropped the sp indices. Each PIC particle is 
imagined to contained the same large number of physical particles, electrons or 
ions. Following the usual Cartesian formulation, the density of real particles within 
a PIC particle at any given time is imagined to be constant, i.e., independent of 
location within the PIC particle volume. In particular, the physical particles are dis- 
tributed uniformly in 8. Unlike the Cartesian case, however, the density of real par- 
ticles in a PIC particle is not constant in time, but varies as l/y”, reflecting the 
change in volume of the pseudoparticle as it moves in the radial direction. (An 
alternate formulation, which we have not pursued, is to imagine the physical par- 
ticles as possessing a l/r density variation within the PIC particle volume.) For the 
case of constant physical particle density, the number of computational particles 
per cell varies directly with r. 

The motion of a particle at time n is specified by the three velocity coordinates 
u;, u;, and u;. Although the PIC particle has no azimuthal spatial coordinate, there 
is an azimuthal velocity component, which describes a rigid body rotation of all the 
contained real particles about the z-axis. 

Following Boris [S], we employ a temporary Cartesian coordinate system for 
each particle as it is advanced. This system is oriented as shown in Fig. 2 so that its 
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x axis has some arbitrary direction perpendicular to the cylindrical z axis, while the 
z axis and origin of the temporary system coincide with those of the permanent 
cylindrical mesh. The arbitrariness arises from the fact that a PIC particle has no 8 
coordinate. With respect to this temporary Cartesian system, the particle positions 
and velocities at time n are 

2.4; = u;, (2.1) 

where the cylindrical position and velocity components on the r.h.s. are those 
carried over from the previous time advance. 

To advance the velocities, using Eqs. (1.28) and (1.29), we require the electric 
and magnetic fields at the particle location, along its trajectory, at time n + l/2. The 
particle location is first estimated from a free streaming approximation and then 
subsequently determined to greater accuracy by a Newton’s method iteration, 
where each successive estimate of the particle parameters at n + l/2 is obtained 
using the fields and their first spatial derivatives at the previous estimate for the 
particle location at that time. The fields are determined at the particle location from 
particle-weighted averages of the cell-centered quantities 

where 

FAX ’ + ‘I*) = c h(x” + I’*, xx) FJx,), (2.2) 
R 

a = r, 8, or 2, the vector component, 

F=E”+’ or B”, 

and the summation is over all grid points. In the PIC formulation which we 
employ, there are at most 4 nonvanishing contributions to the summation. The 
weighting function, the particle-in-cell shape factor, is given by 

h(x”, Xg) = H(ri - r”, dr) H(zi - zn, AZ) 
1 + ri/rn ( > 2 , 

where 

H(x, Ax) = I 1 - /xl/Ax for 1x1 <Ax 

0 otherwise. 
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The final factor, unique to cylindrical coordinates, reflects the radial dependence of 
both the PIC particle volume and the volume partitioning by the cell boundary sur- 
faces. (In the alternate formulation where the real particles within a PIC particle are 
imagined to be distributed with a density par-’ at any given time, this factor 
would disappear.) The weighting function has the usual normalization property, 

c h(x”, xg) = 1. (2.4) 

The averaging procedure of Eq. (2.2) gives the magnitude for each field com- 
ponent in a coordinate system rotated slightly from our temporary Cartesian 
system, determined by u”+ ‘I2 and F. In terms of the temporary Cartesian system 

Fx = cash,,) FAX n+‘/2) - sin(y,,,) Fe(x”+ ‘I*), (2.5) 

F, = sin(y,,,) FAX n + “*) + cos(y,,,) F,(x” + I’*), (2.6) 

and 
F; = F,(x” + 1’2), (2.7) 

FIG. 1. View along the z axis of a PIC particle in the cylindrical mesh. The boundaries of the mesh 
cells are the dashed concentric circles with radial spacing Ar. The coordinates of the cells r, specify the 
cell centers. Similarly the PIC particle, indicated by the solid circles, has a radial thickness dr and a 
coordinate I” which specifies its center at time n. The specification of the PIC particle with respect to the 
axial direction is the same as in the Cartesian case. 
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where the angle y1,2 is given by 

y,,2= tan-’ 

The velocities are now advanced to time n + l/2 in the temporary Cartesian system 
using Eqs.(1.28) and (1.29) with the fields given by Eqs. (2.5)-(2.7). Particle data 
from the previous iteration are used in the evaluation of the fields. All vector com- 
ponents in the equations of motion are specified with respect to the same set of unit 
vectors. Next the particle positions are advanced. 

The advance in position along the z axis proceeds precisely as in the pure Car- 
tesian case. 

z n+1=zn+U;+“2At. (2.8) 

The advance in the radial direction, as can be seen from Fig. 2, is given by 

r n+l=(rn+ u”,+‘~’ At) cos y + (u;+ ‘j2 At) sin y, (2.9) 

with 

T Particle trajectory between 

I 
times n and n+l 

Point where fields ore 
to be calculated 

(2.10) 

FIG. 2. Temporary local Cartesian coordinate system for advancing a particle from time nAt to 
(n + 1) At. The z axis is directed into the page. The z axis and the origin coincide with those of the per- 
manent cylindrical coordinate system. The motion of the particle is indicated, considering for simplicity 
only motion perpendicular to the z axis. 
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The velocity u “+’ is now obtained by first performing a linear extrapolation of U” 
and u” + Ii2 in the Cartesian system, 

U 
n+l =2u”+I/2-un, (2.11) 

Then, the final step is to express u n+ ’ in the cylindrical system: 

U”+l=U”+l 
r x cosy+u~;+‘siny, 

uo n+l= -p+l .Y siny+u;+lcosy, 

and 

uy+‘=uy+‘. (2.12) 

Note that the above formulae are correct even in the case r” + u;+ Ii2 dt < 0 with the 
convention tan’(a/b)= [tan ‘(a/b)lp+(l -b/lbl) 7c/2. 

This procedure is repeated particle-by-particle. Aside from a sequence of coor- 
dinate rotations, the manipulations required are not different from those performed 
in the pure Cartesian case. 

3. ADVANCING THE FIELDS IN TIME 

The field equations ( 1.12) and ( 1.13) are solved at time n + 0 after the particles 
have been advanced to time n. The source functions N”+’ and J”+ I”, obtained by 
extrapolation of the particle densities at n, using the moment equations (1.21) and 
(1.23), are themselves functions of E”+O. The source functions thus depend on both 
@ nf8 and A”+‘, and the field equations are not simply Poisson or Helmholz 
equations, as would be the case in a fully explicit scheme. As a result the field 
equations may not be solved by a single application of fast Fourier techniques. 
Here, instead, the field and fluid equations are solved simultaneously by an iterative 
method which makes repeated use of the Poisson-Helmholtz inversion. We proceed 
as follows. 

First, the current densities are advanced to n + l/2, using E” as a first estimate for 
E n+O and J” for J”+l12 on the r.h.s. of Eq. (1.23). The result, a new estimate for 
J”+ ‘j2, is then employed in Eq. (1.21) to advance the charge density to n + 0. This 
estimate is next employed in Eq. (1.13) to give an estimate for @‘+ ‘. It has proved, 
however, to be necessary to introduce a pseudopotential at this point to make 
possible the convergence of the iteration procedure. The appropriate pseudopoten- 
tial is found by shifting the dominant @“+e-term in N”+ ‘, which is second order in 
At, over to the 1.h.s. of Eq. (1.13). We thus obtain 

V.(l +Q)V@“+“= -47rn”+U+V~QV@“+H, (3.1) 
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The only remaining 0”+ a -terms on the r.h.s. of Eq. (3.1) are third (and higher) 
order in At. On the basis of Eq. (3.1) we introduce the vector and scalar 
pseudopotentials, 

V@+Vxl=(l +Q)V@“+“. (3.3) 

It is sufficient that 3, possesses only a &component, so V. li. = 0 in the two-dimen- 
sional model. Substituting Eq. (3.3) into the 1.h.s. of (3.1) gives 

v2$'+l= -471Nn+"+V.Q(V@"+e)', (3.4) 

where 1 is the iteration index. The requirement V x VP'+' = 0, which is not 
automatically satisfied after the pseudopotential is introduced, gives the equation 
for h, 

V2b’+ l= [(VI/G” l+ v x I?) x VB]/( 1 - /I), (3.5) 

where j?- Q/( 1 + Q). The r.h.s. of Eq. (3.5) possesses only a &component. Thus, 
supposing 1+5’ and 1’ are known, 1+9”’ is obtained by a Poisson inversion of Eq. 
(3.4). Then $‘+’ and 3L’ are substituted into the r.h.s. of Eq.(3.5), and which reduces 
to a fielmholtz equation for 1,. The one-component vector I is thus obtained from 
a single Helmholtz inversion. The final step may be iterated by back substitution 
into the r.h.s. to give a more accurate solution for 1 ‘+ ’ A satisfactory starting point . 
is 1’~ 0. The solutions $“’ and A’+’ are employed with Eq. (3.3) to reevaluate 
-v. QvP+e, the dominant Qnf e-term in 47rN”+“. A direct Poisson inversion of 
Eq. (1.13) is then performed to give a further improved estimate of VW'+e. With 
this final step, V x VW'+ a = 0 precisely, and Faraday’s law will be satisfied precisely, 
regardless of finite-difference or convergence considerations. The method of Concus 
and Golub [6] and [7] for inverting the modified two-dimensional Poisson 
operator, V. a(.~, y) V, can be used to accelerate convergence. 

Next Eq. (1.12) is used to obtain an improved estimate of An+‘. Taking 
A"+'zA" for the first approximation to the unknown vector potential, all quan- 
tities required on the r.h.s. are either known or have been estimated at this point. 
This time the dominant A”+e-term in J”“‘* is shifted over to the 1.h.s. of Eq. (1.12) 
after taking the maximum of the coefftcient over the z direction. This gives a 
Helmholtz equation, 

V2An + e ~~~~~~~~~~,~~J"+l.'~~~~li~~v~n~~edfv~n 

1 

-e(c 
[(l+@A"-6A"-'1, 
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a(r)=~max, 

[ 

+gr,z) . 

s 1 (3.7) 

With the inversion of Eq. (3.6), we have from Eq. (1.15) a new estimate for E” + ‘. 
This quantity is used to initiate the next iteration, starting with the current-density 
advance. The procedure is repeated until a satisfactory degree of convergence is 
reached, typically in 20-50 iterations, with at most a small number ~4 of back sub- 
stitutions of h in Eq. (3.5) each iteration. 

The electric field En+’ obtained from this solution and the magnetic field B” 
derived from the proceeding field solution are then employed to advance the par- 
ticles from time n to n + 1, as described in Section 2. 

4. APPLICATION TO SELF-GENERATED MAGNETIC FIELDS AND 
SUPERTHERMAL ELECTRON TRANSPORT IN LASER-IRRADIATED FOILS 

One of the most interesting applications of plasma simulation methods is the 
computation of the response of a plasma to laser irradiation. The VENUS code 
with a Cartesian mesh has previously been employed for such simulations [S]. 
These computations have shown that electrons heated by the absorption of laser 
energy in a foil target generate strong magnetic fields of thermo-electric origin, 
which spread from the edge of the laser spot out along the target surface. The fields 
strongly influence the transport of superthermal electrons by the irradiation and 
can confine a large fraction of the deposition laser energy in the plasma blowoff 
region. 

The Cartesian VENUS computations take the x axis to be perpendicular to the 
foil surface, with the y and z axes parallel to the surface. As all quantities in these 
simulations are z-independent, the computational system is effectively an infinitely 
long plasma strip, of finite width and thickness, with an infinitely long laser spot 
strip down the center. See Fig. 3. Such a setup is adequate for describing the general 
features of an irradiated plasma. However, it does not closely represent the com- 
mon experimental geometry where a laser beam of circular cross section is focussed 
on the center of a disk-shaped foil target. In particular the spot to foil area ratio in 
the Cartesian setup can be an order of magnitude larger than in the experiment to 
be simulated. This introduces difficulties when detailed comparisons of simulation 
results and experiment are made, as will be shown in Section 4b. Clearly a cylin- 
drical mesh is more appropriate for the simulation of these experiments. It provides 
a more qualitatively realistic picture of the magnetic field generation and the 
superthermal electron transport. In this section we present the results of a cylin- 
drical VENUS simulation of a laser-irradiation experiment and compare them with 
the results of a Cartesian simulation. 
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Plasma Boundary 

FIG. 3. Geometry for the Cartesian simulation of the laser-irradiated foil. 

a. Spec$cation of the Simulations 

We consider the case of CO, laser irradiation of a 40 pm thick, 500 pm diameter 
disk. See Fig. 4. this is embedded in a computational mesh extending 50 pm beyond 
the side edge of the target and 160 pm in front of the target, the latter to accom- 
modate plasma blowoff. One imagines the laser beam as entering from the front of 
the target and depositing energy into a spot region 135 pm in diameter and 10 pm 
thick centered about the critical surface of the plasma, i.e., the surface of critical 
density for CO2 laser irradiation. The cylindrical mesh represents the geometry of 
this system exactly, while the Cartesian setup approximates the system by a 500 pm 
wide plasma strip and a 67 pm wide laser spot strip, as illustrated in Fig. 3. The 
smaller spot width will give B-fields of comparable spatial extent and magnitude to 
those in the cylindrical computation. The target is taken to be fully ionized 
hydrogen having the physical ion to electron mass ratio, 1836; initial thermal tem- 
peratures of kT, = 2.5 keV and kT, = 0.1 keV for the electrons and ions, respec- 
tively; and a density of 2p,, twice the critical density for the 10.6 pm laser 
wavelength. The density is ramped linearly to zero over a distance of 8 pm from the 
front and side plasma boundaries. 

Intense CO, laser irradiation of a target produces highly energetic superthermal 
electrons near the critical surface, which take up most of the deposited energy. For 
purposes of the simulation, the laser energy deposition is approximated by a 
localized energy source in the plasma target. More specifically, kinetic energy is 
imparted to individual electrons inside the specified spot region so that they acquire 
a superthermal velocity distribution with a temperature kT,, = 20 keV. The rate at 
which energy is imparted to the plasma increases linearly with the time from zero to 
a maximum value of - 5 x lOI W/cm2 at t = 1 lps. The irradiance is subsequently 



WALLACE ET AL. 

FRONT VIEW 

Mesh 

Side View 

Mesh Boundary 

m Laser 
light 

FIG. 4. Geometry for the cylindrical simulation of the laser-irradiated foil 

held constant. (This corresponds to a laser irradiance of N lOI W/cm’, as typically 
one-third of the laser energy is absorbed by the target.) 

The cylindrical simulation has 100 cells in the r direction and 128 in the z direc- 
tion. The Cartesian simulation has 100 cells in the x direction and 256 in the y 
direction, which extends over a distance of twice the radius of the cylindrical 
geometry. There are 250,000 each of electron and ion pseudoparticles in the cylin- 
drical computation and 500,000 in the Cartesian computation. The time step is 
At = 25/w,,, with mpe = 1.78 x 1014 see-‘, the frequency of CO, laser light. This 
value is sufficiently large that the finite grid instability does not develop, but is well 
below the electron Courant limit, c.f., Eq. (1.14). 

b. Results and Discussion 

We shall discuss the results of the simulations at a time of t = 28.1 ps, 
corresponding to the completion of 2000 computational cycles. At this time self- 
generated magnetic fields, produced by the plume of superthermal electrons which 
emerges from the laser spot and is directed back toward the incident beam, are well 
developed. Figure 5 shows a plot of the energy history for the cylindrical 
simulation. The largest energy component is the electron kinetic energy, accounting 
for N 70 % of the energy in the system. It is relatively constant during the course of 
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FIG. 5. Energy history for the cylindrical VENUS simulation. Each curve shows the energy versus 
time for the indicated plasma component. 

the simulation. A comparable amount of energy is introduced into the system by 
the energy source. A large fraction, 57%, of the source energy, all of which is 
deposited into electrons, is subsequently transported by electrons across the rear 
and side boundaries of the mesh. Much of the remaining source energy, 28 %, is 
imparted to ions by thermal and superthermal electrons. The rest of the source 
energy remains in electron energy, fO%, or goes into magnetic field energy, 2.7%. 
The energy partitioning for both the cylindrical and Cartesian simulations is sum- 
marized in Table I. The total energy in the system, taking into consideration source 
decomposition and boundary effects, is conserved to within 2%. Figure 6 shows the 
corresponding energy-history plot for the Cartesian simulation. The Cartesian and 
cylindrical results are quite comparable except for the background electron energy 
in the system. As would be expected, the Cartesian simulation has less background 
energy relative to the spot. Here, as in the cylindrical case, the electrons take up a 
large fraction of the energy in the system, and this energy component varies 
relatively slowly. And as before roughly half the source energy, 56%, is carried out 
of the system by electrons, which in this case is more than the electron energy in the 

TABLE I 

Normalized” Energy Components: Initial and Final 

Cylindrical geometry Cartesian geometry 

t=O r=28.1 ps l=O r=28.1 ps 

Electrons 0.956 1.090 0.956 1.319 
Ions 0.044 0.410 0.044 0.756 
Magnetic field 0.000 0.036 0.000 0.117 
Electric field 0.000 0.005 0.000 0.036 
Escaped 0.000 0.755 0.000 1.852 
Source O.OCO 1.322 0.000 3.293 

‘The energy components are normalized with respect to the total initial energy in the system. 
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FIG. 6. Energy history for the Cartesian VENUS simulation. Each simulation. Each curve shows the 
energy versus time for the indicated plasma component. 

mesh at late times. All the lost energy comes out the rear boundary in this 
calculation as periodic boundary conditions have been imposed in the y direction. 
A somewhat smaller fraction than in the cylindrical case, 22% of the source energy 
is imparted to ions, while 11% goes to electrons and 3.6% to the magnetic field. 
The ratio of ion to electron energy at late times is, however, larger. Energy is con- 
served in this calculation to within 6%. The nonconservation of energy appears to 
be associated with regions of the mesh most strongly affected by an imposed energy 
source. Energy is conserved better in the cylindrical computation because a smaller 
fraction of phase space is strongly influenced by the source. This can be seen from a 
comparison of Figs. 5 and 6, which shows how a larger relative amount of energy 
passes from the source into electrons and then out of the system in the Cartesian 
computation. 

The cylindrical magnetic field results are shown in Fig. 7, a contour plot of Be, 
the dominant field component in this geometry. As there are relatively few com- 
putational particles in the small-radius region, the statistics are poor here and the 
small-radius fields are not expected to be particularly accurate. However, only the 
relatively few particles near r = 0 are affected by inaccurate fields. We thus ignore 
the high-gradient structure in the lower left corner of Fig. 7 and concentrate on the 
large-scale structure which covers much of the plot. The field reaches a maximum 
value of -0.5 MG well out from the symmetry axis and just in front of the laser 
spot, where the electron plume is most well developed. The field falls off from this 
point in both the axial and radial directions. This can be seen more clearly from the 
field profile plots shown in Fig. 8. The radial fall-off outside the spot region has an 
approximate l/r-dependence. The field configuration in Cartesian geometry is dif- 
ferent. Figure 9 shows the contour plot of B,, the dominant field component in the 
Cartesian computation. The plot shows that the field dependence in the x direction 
is quite similar to the corresponding z-dependence in the cylindrical simulation, 
with maximum values of N kO.8 MG occurring just in front of the laser deposition 
strip and near the strip edges. In contrast to the cylindrical results, the field does 
not fall off dramatically away from the laser strip in the y direction. The difference 
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FIG. 7. Contour plot of B8 obtained from the cylindrical VENUS computation at 1=28.1 ps. The 
energy deposition region at this time is indicated. The field component reaches a maximum value 
-0.5 MG just in front of the laser spot. 
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FIG. 8. Profile plots of B, obtained from the cylindrical VENUS simulation at I = 28.1 ps. Note the 
l/r fall-off of the magnitude outside the laser spot most evident in (a). 



452 WALLACE ET AL. 

55 

Y (pm) 

FIG. 9. Contour plot of B, obtained from the Cartesian VENUS computation at I= 16.9 ps. The 
energy deposition region at this time is indicated. The field component has a maximum absolute value 
-0.8 MG indicated by the two circular patterns just in front of the laser spot. 

in the B field dependence along the front surface of the plasma can be qualitatively 
understood as follows: The plasma system is to a good approximation charge 
neutral so that V. J -0. The lateral electron component is the dominant com- 
ponent of J in the low-density region in front of the plasma where B is large, i.e., 
(J,)? in the cylindrical case and (J,)., in the Cartesian case. Neglecting the other 
smaller components of J, charge neutrality gives rJ, independent of r in the cylin- 
drical case and Jp independent of y in the Cartesian case. Hence B,cc l/r in the one 
case and BZ is approximately independent of y in the other. The fall-off Bz near the 
y boundaries of the Cartesian simulation is the result of superthermal electrons 
propagating around the sides of the plasma, confining the field to the neighborhood 
of the target. 

The lateral transport occurs when superthermal electrons, having been ejected 
from the laser deposition region, undergo E x B drift away from the spot along a 
trajectory in front of the plasma. (The electric held here is the space charge field of 
the expanding plasma and is directed normally out of the front surface.) In the 
simulations, a measure of this lateral transport process is proved by a plot of the 
net electron kinetic energy escape rate through the rear boundary of the com- 
putational mesh. In these simulations when an electron exits the plasma through 
this boundary, it is reintroduced back into the computational mesh at a point near 
its exit point but with a velocity obtained by sampling the initially assumed electron 
thermal spectrum. Thus a positive escape rate is a signature of superthermal elec- 
tron escape. Figure 10 shows the rear-surface electron energy escape rate versus r 
for the cylindrical simulation, averaged over a time interval 22.5 < t d 27.0 ps. The 
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FIG. 10. Electron energy escape. rate across the rear boundary (z=O) of the mesh versus r for the 
cylindrical VENUS computation. The rate is averaged over the time interval 22.5 < t < 27.0 ps. 

large peak near r =0 describes the loss of energetic electrons passing directly 
through the plasma from the spot region. (The escape rate vanishes at r = 0 because 
the cylindrical area factor 27cr vanishes.) 

The small escape rate at intermediate r-values indicates that here electrons are 
unable to penetrate the B field and escape from the system. Finally at large r near 
the radial boundary of the plasma, there is a second significant contribution 
indicating some superthermal transport out to this point, where B, becomes 
vanishingly small. Considering energy loss out both the rear and radial boundaries, 
17 % of the source energy is transported by the superthermal electrons to radial dis- 
tances greater than - 110 pm from the edge of the laser spot and lost from the 
system in this time frame. This is a lower bound for the lateral transport of energy 
away from the spot. Comparison of this computation with the corresponding elec- 
trostatic simulation where B = A G 0 shows that the ions acquire 27 % more energy 
in the full electrodynamic case during the time interval. This additional energy is 
that which is imparted to ions outside the spot by superthermal electrons laterally 
transported by the B field. As a result an additional 6% of the source energy is 
carried outside the spot region by superthermal electrons and deposited into ion 
energy, giving a total magnetic-field-induced lateral transport outside the spot of 
23% of the source energy in the time frame. The general conclusion from this 
simulation is that significant superthermal lateral transport should be expected for 
the assumed experimental parameters on a time scale of tens of ps. One would 
arrive at a similar conclusion from the corresponding Cartesian simulation. 
Figure 11 shows the rear-surface energy escape plot for that simulation. Here, as in 

581/63/Z-14 
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FIG. 11. Electron energy escape rate across the rear boundary (x = 0) of the mesh versus r for the 
Cartesian VENUS computation. The rate is averaged over the time interval 22.5 < t < 27.0 ps. 

the cylindrical case, there is a large contribution below the spot due to direct target 
penetration. And, as before, there is significant loss at large lateral distances from 
the spot, in this case near the y boundaries of the plasma where superthermal elec- 
trons propagate around the sides toward the rear boundary of the mesh. This 
simulation also indicates significant lateral transport away from the spot for the 
assumed experimental parameters on a time scale of tens of ps. In this case 20% of 
the source energy in the time frame appears as electron kinetic energy at distances 
greater than -200 pm from the spot edge. This energy is, however, generally trans- 
ported somewhat further from the laser spot than in the cylindrical case. Com- 
parison with the corresponding electrostatic simulation shows that an additional 
12% of the source energy is transported outside the spot and imparted to ions, a 
larger fraction than for the cylindrical case, giving a total of 32% of the source 
energy transported outside of the spot by the influence of the B field during the time 
interval under consideration. The differences in the results of the two simulations 
may be readily understood. 

The distance the electrons are transported away from the spot before being 
drawn back into the plasma by the space charge E field depends on the spatial 
variation of the B field. In the Cartesian case, with B, approximately constant in y 
away from the laser spot, a strong E x B drift, with small Larmor radius, across 
much of the front plasma surface can occur, producing considerable lateral trans- 
port. In the cylindrical case, with the rapid radial fall off of B,, the Larmor radius 
of the superthermal electrons becomes very large beyond a relatively short radial 
distance from the spot. Consequently these electrons will reenter the denser region 
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of the plasma, lateral transport ceases, and energy deposition to ions ceases. As a 
result there is less lateral transport than in the Cartesian case. 

The two simulations show significant qualitative differences in both the self- 
generated magnetic fields and the lateral transport of superthermal electrons away 
from the laser spot. The underlying physical processes being simulated are the 
same, but the computed observables are different. These differences are readily 
understood, arising from differences in the geometry of the two simulations. But 
they point up the utility of employing a cylindrical mesh in the simulation of cylin- 
drically symmetric experiments. The interpretation of computed results and the 
comparison of such results to experiment is then more direct. 

5. SUMMARY 

The VENUS code, a two-dimensional electromagnetic PIC plasma simulator 
employing the implicit moment method, has been generalized so that computations 
may be performed in either a cylindrical or a Cartesian mesh. The implicit moment 
method makes possible the simulation of a complete experimental plasma over a 
much longer time duration than was previously possible with explicit techniques. In 
the implicit moment method, as in explicit PIC techniques, the system is advanced 
one time step by performing a particle advance and a field advance in succession. 
These two procedures must be modified in a consistent manner when a different 
coordinate system is to be employed. From a structural standpoint, the cylindrical 
particle mover does not differ greatly from the two-dimensional Cartesian particle 
mover, although there are some additional complications. Such a code may be 
readily developed from an existing Cartesian code with a few modifications, as 
shown in Section 2. Likewise the solution of the field equations in cylindrical coor- 
dinates closely follows the Cartesian method of solution in the implicit moment 
method. The significant modification is the addition of l/r- and l/r2-terms to the 
fluid and field equations, which, however, does not change the method of solution. 
The additional terms can be found in the formulae of the Appendix. The cylindrical 
capability is useful in the simulation of the wide class of cylindrically or 
approximately cylindrically symmetrical experiments, making possible a more direct 
comparison of computational results and experimental data. 

APPENDIX: SPATIAL DIFFERENCING 

All field quantities are evaluated at cell centers xR = (ri, z,), where 

ri=(i-+)dr, i = 1, 2 ,..., i,,,, 

zj=(j-+)dz, j = 11 L.., j,,, 3 

64.1) 

(A.2) 



456 WALLACE ET AL. 

and 
g= i+ i,=,(j-- 1). (A.3) 

We denote a field at xg by xii. The first spatial derivatives are evaluated using the 
formulae 

(A.4) 

and 

= Xi,j+ 1 - Xi,j- I 

242 ’ 

In our model where all quantities are independent of 0, all derivatives with respect 
to 0 vanish. The resulting simplified expression for the gradient of a scalar x is 

And the expression for the curl of a vector 5 is 

The divergence of a vector 5 is evaluated using the formula 

(‘4.6) 

(-4.7) 

(‘4.8) 

Putting the divergence in this form insures precise charge conservation with 
Eq. (1.25). The V*-operator acting on a scalar is evaluated from 

And the V*-operator acting on a vector is 

(v*t)j,j=~[(v2~,)j,j-~]+B[(v*~*)j,,-y] t t 

(A.9) 

+ &V24J,.,, (A.lO) 
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Finally, expressions of the form V. ICVX, where IC is a scalar, are evaluated from 

+[(Q+;+Q) (xi,,+r-r.i)(K’j+~i,i’! (*i,,-x,,j+I)]@$. 
(A.ll) 

The above formulae are used whenever spatial derivatives occur in the field 
equations. 
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